Human-powered Healthcare

The Economist writes about Freeplay and its work in developing countries:

Freeplay has teamed up with a group of doctors at University College London to create medical equipment that works well in poor parts of the world. The project focuses on neonatal care, and with good reason. Infant death is still a fact of life in much of sub-Saharan Africa and South Asia; roughly 14% of babies born in Angola, for example, die before they reach their first birthday, more than 30 times the rate of infant mortality in Britain. The United Nations Millennium Development Goals set a target of reducing child mortality by two-thirds between 1990 and 2015. While much of that can be achieved through vaccines, clean water and better diet, there is a role for new technology as well. As Rory Stear, Freeplay’s boss, points out, 95% of the world’s neonatal medical technology is available to only 5% of infantsthose born in the rich world.

Engineers at Freeplay have redesigned four pieces of medical equipment, routinely used in developed countries, to better suit developing ones. The first is a pulse oximeter to measure levels of oxygen in the blood, essential for babies with lung infections because it gives health-care workers early warning that their patients need extra oxygen (and oxygen tanks are one of the few bits of medical equipment available in poor clinics). Second is a syringe driver for delivering small amounts of fluid and drugs in tightly timed doses to babies with diarrhoea and other complaints.

A third device is a microcentrifugeakin to a tiny, high-speed salad spinnerwhich takes small samples of blood and spins them at 4,000 revolutions per minute to separate the cells and fluid that make up blood. The colour of one component, called serum, can give doctors an indication of whether their patient is jaundiced, a tricky task in Africa where black babies do not simply turn yellow like white ones. The quantity of red blood cells in the sample can also point to anaemia, a common problem where nutrition is poor. The final lifesaver is a hand-held fetal heart monitor that uses ultrasound to keep tabs on how babies are doing in the womb, which is critical to the health of both mother and child.

All these devices get round the need for mains electricity or batteries by using a handcrank, foot pedal or solar panel to generate energy, which can then power the machines directly or be stored in internal batteries for future use. The machines’ software and electronics have also been stripped down to bare essentials, not only to reduce power consumption but also to keep down the cost and size and make them more robust. Pulse oximeters in the rich world, for example, typically have complex LCD read-outs, while fetal heart monitors usually have to be wheeled around on trolleys. Freeplay’s hand-held versions lack fancy features, making them smaller, lighter, cheaper and tougher.

Published by

Rajesh Jain

An Entrepreneur based in Mumbai, India.